39 research outputs found

    Citrullinated proteins have increased immunogenicity and arthritogenicity and their presence in arthritic joints correlates with disease severity

    Get PDF
    Autoantibodies directed against citrulline-containing proteins have an impressive specificity of nearly 100% in patients with rheumatoid arthritis and have been suggested to be involved in the disease pathogenesis. The targeted epitopes are generated by a post-translational modification catalysed by the calcium-dependent enzyme peptidyl arginine deiminase (PAD), which converts positively charged arginine to polar but uncharged citrulline. The aim of this study was to explore the effects of citrullination on the immunogenicity of autoantigens as well as on potential arthritogenicity. Thus, immune responses to citrullinated rat serum albumin (Cit-RSA) and to unmodified rat serum albumin (RSA) were examined as well as arthritis development induced by immunisation with citrullinated rat collagen type II (Cit-CII) or unmodified CII. In addition, to correlate the presence of citrullinated proteins and the enzyme PAD4 with different stages of arthritis, synovial tissues obtained at different time points from rats with collagen-induced arthritis were examined immunohistochemically. Our results demonstrate that citrullination of the endogenous antigen RSA broke immunological tolerance, as was evident by the generation of antibodies directed against the modified protein and cross-reacting with the native protein. Furthermore we could demonstrate that Cit-CII induced arthritis with higher incidence and earlier onset than did the native counterpart. Finally, this study reveals that clinical signs of arthritis precede the presence of citrullinated proteins and the enzyme PAD4. As disease progressed into a more severe and chronic state, products of citrullination appeared specifically in the joints. Citrullinated proteins were detected mainly in extracellular deposits but could also be found in infiltrating cells and on the cartilage surface. PAD4 was detected in the cytoplasm of infiltrating mononuclear cells, from day 21 after immunisation and onwards. In conclusion, our data reveal the potency of citrullination to break tolerance against the self antigen RSA and to increase the arthritogenic properties of the cartilage antigen CII. We also show that citrullinated proteins and the enzyme PAD4 are not detectable in healthy joints, and that the appearance and amounts in arthritic joints of experimental animals are correlated with the severity of inflammation

    Renal expression and serum levels of high mobility group box 1 protein in lupus nephritis

    Get PDF
    INTRODUCTION: High mobility group box 1 protein (HMGB1) is a nuclear DNA binding protein acting as a pro-inflammatory mediator following extracellular release. HMGB1 has been increasingly recognized as a pathogenic mediator in several inflammatory diseases. Elevated serum levels of HMGB1 have been detected in autoimmune diseases including Systemic lupus erythematosus (SLE). However, the local expression of HMGB1 in active lupus nephritis (LN) is not known. Here we aimed to study both tissue expression and serum levels of HMGB1 in LN patients with active disease and after induction therapy. METHODS: Thirty-five patients with active LN were included. Renal biopsies were performed at baseline and after standard induction therapy; corticosteroids combined with immunosuppressive drugs. The biopsies were evaluated according to the World Health Organization (WHO) classification and renal disease activity was estimated using the British Isles lupus assessment group (BILAG) index. Serum levels of HMGB1 were analysed by western blot. HMGB1 expression in renal tissue was assessed by immunohistochemistry at baseline and follow-up biopsies in 25 patients. RESULTS: Baseline biopsies showed WHO class III, IV or V and all patients had high renal disease activity (BILAG A/B). Follow-up biopsies showed WHO I to II (n = 14), III (n = 6), IV (n = 3) or V (n = 12), and 15/35 patients were regarded as renal responders (BILAG C/D). At baseline HMGB1 was significantly elevated in serum compared to healthy controls (P < 0.0001). In all patients, serum levels decreased only slightly; however, in patients with baseline WHO class IV a significant decrease was observed (P = 0.03). Immunostaining revealed a pronounced extranuclear HMGB1 expression predominantly outlining the glomerular endothelium and in the mesangium. There was no clear difference in HMGB1 expression comparing baseline and follow-up biopsies or any apparent association to histopathological classification or clinical outcome. CONCLUSIONS: Renal tissue expression and serum levels of HMGB1 were increased in LN. The lack of decrease of HMGB1 in serum and tissue after immunosuppressive therapy in the current study may reflect persistent inflammatory activity. This study clearly indicates a role for HMGB1 in LN

    Morphological characterization of intra-articular HMGB1 expression during the course of collagen-induced arthritis

    Get PDF
    High-mobility group chromosomal box protein 1 (HMGB1) is a structural nuclear protein that promotes inflammation when present extracellularly. Aberrant, extracellular HMGB1 expression has been demonstrated in human and experimental synovitis. The aim of the present study was to elucidate the temporal and spatial expression of HMGB1 compared to that of the central mediators tumor necrosis factor (TNF) and interleukin-1-beta (IL-1β) during the course of collagen-induced arthritis. Thus, Dark Agouti rats were immunized with homologous type II collagen and synovial tissue specimens were obtained at various time points prior to and during the course of clinical arthritis. Local cytokine responses were assessed by immunohistochemistry and by in situ hybridization. We demonstrate a distinct nuclear expression of HMGB1 at early disease-preceding time points. Preceding clinical onset by a few days, cytoplasmic HMGB1 expression was evident in synoviocytes within the non-proliferative lining layer. Pronounced cytoplasmic and additional extracellular HMGB1 expression coincided with the progression of clinical disease. In advanced arthritis, the number of cells with cytoplasmic HMGB1 expression was quantitatively comparable to that of cells expressing TNF and IL-1β. Interestingly, although HMGB1 was abundantly expressed throughout the inflamed synovium at a protein level, upregulation of HMGB1 mRNA was restricted mainly to areas of cartilage and bone destruction. In conclusion, these new findings implicate a role for HMGB1 in both inducing and perpetuating inflammatory events of significant importance in the destructive processes in chronic arthritis

    High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts

    Get PDF
    Inflammation can be infectious and/or sterile depending on the initiating event. The proinflammatory mediator High mobility group box protein 1 (HMGB1) is a nuclear protein released from cells during both sterile and infectious inflammation and once extracellular, initates and potentiates inflammation by inducing cytokine production and by recruiting inflammatory cells. Autoimmune diseases are characterised by chronic sterile inflammation leading to tissue destruction. HMGB1 has been implicated in the pathogenesis of several autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosis, multiple sclerosis and myositis. The involvement of HMGB1 in arthritis has been shown by overexpression of HMGB1 in RA synovial tissue and synovial fluid, by beneficial outcome of therapeutic HMGB1-blockade in several experimental arthritis models and by the induction of arthritis by intra-articular injection of recombinant HMGB1 into mice. In this thesis work I set out to investigate the potential role of HMGB1 in juvenile idiopathic arthritis (JIA), to further delineate mechanisms by which HMGB1 can contribute to arthritis pathogenesis and to study the means by which HMGB1 activity can be suppressed. I could report for the first time that HMGB1 levels were increased in synovial fluid as compared to plasma during JIA. HMGB1 levels in synovial fluid did not correlate to disease duration. In contrast, the recorded levels of IL-8 and S100 proteins were higher in synovial fluid during early phases of disease. This indicates a change in the inflammatory phenotype during the progression of JIA. High HMGB1 levels in synovial fluid correlated with early JIA onset, suggesting differences in immunopathogenesis between patient groups. I have also demonstrated that HMGB1 may form complexes with the exogenous TLR ligand LPS or the endogenous inflammatory mediators IL-1α and IL-1β, respectively. Compared to each mediator alone such complexes stimulated synovial fibroblasts from arthritis patients to enhanced production of cytokines and tissue degrading enzymes. This enhancement is mediated via the reciprocal receptor for each HMGB1-partner molecule. Since all the studied mediators are present in arthritic joint during inflammation, this is a potential mechanism through which HMGB1 enhances ongoing inflammation and destruction during rheumatic diseases. Finally, I have demonstrated that the proinflammatory activity of HMGB1 can be therapeutically targeted, either by inhibiting its active release by clinically approved anti-rheumatic drugs or by neutralization with a HMGB1-specific monoclonal antibody. Extracellular secretion of HMGB1 from LPS+IFN-γ stimulated human primary monocytes was inhibited by dexamethasone, chloroquine and gold sodium thiomalate in vitro as recorded using an ELISPOT assay. Therapeutic administration of an HMGB1-specific HMGB1 monoclonal antibody ameliorated arthritis in two separate experimental models. In conclusion, my thesis work has added to the growing evidence that HMGB1 is involved in the pathogenesis of arthritis, has revealed a potential mechanism for its proinflammatory function and has demonstrated a means by which HMGB1-mediated activities can be counteracted

    Multi-Organ Expression Profiling Uncovers a Gene Module in Coronary Artery Disease Involving Transendothelial Migration of Leukocytes and LIM Domain Binding 2: The Stockholm Atherosclerosis Gene Expression (STAGE) Study

    Get PDF
    Environmental exposures filtered through the genetic make-up of each individual alter the transcriptional repertoire in organs central to metabolic homeostasis, thereby affecting arterial lipid accumulation, inflammation, and the development of coronary artery disease (CAD). The primary aim of the Stockholm Atherosclerosis Gene Expression (STAGE) study was to determine whether there are functionally associated genes (rather than individual genes) important for CAD development. To this end, two-way clustering was used on 278 transcriptional profiles of liver, skeletal muscle, and visceral fat (n = 66/tissue) and atherosclerotic and unaffected arterial wall (n = 40/tissue) isolated from CAD patients during coronary artery bypass surgery. The first step, across all mRNA signals (n = 15,042/12,621 RefSeqs/genes) in each tissue, resulted in a total of 60 tissue clusters (n = 3958 genes). In the second step (performed within tissue clusters), one atherosclerotic lesion (n = 49/48) and one visceral fat (n = 59) cluster segregated the patients into two groups that differed in the extent of coronary stenosis (P = 0.008 and P = 0.00015). The associations of these clusters with coronary atherosclerosis were validated by analyzing carotid atherosclerosis expression profiles. Remarkably, in one cluster (n = 55/54) relating to carotid stenosis (P = 0.04), 27 genes in the two clusters relating to coronary stenosis were confirmed (n = 16/17, P<10−27and−30). Genes in the transendothelial migration of leukocytes (TEML) pathway were overrepresented in all three clusters, referred to as the atherosclerosis module (A-module). In a second validation step, using three independent cohorts, the A-module was found to be genetically enriched with CAD risk by 1.8-fold (P<0.004). The transcription co-factor LIM domain binding 2 (LDB2) was identified as a potential high-hierarchy regulator of the A-module, a notion supported by subnetwork analysis, by cellular and lesion expression of LDB2, and by the expression of 13 TEML genes in Ldb2–deficient arterial wall. Thus, the A-module appears to be important for atherosclerosis development and, together with LDB2, merits further attention in CAD research

    Cytokines and cytokine-directed intervention in experimental arthritis

    No full text
    Rheumatoid arthritis (RA) is a common chronic autoimmune and inflammatory disease. Although the etiology of RA remains unknown, a general understanding of the pathogenesis is steadily increasing. The macrophage products tumor necrosis factor (TNF) and interleukin 1 (IL-1) are recognized as pivotal mediators in the arthritic process. Therapeutic approaches targeting the action of these cytokines represent the most successful achievements since the discovery of corticosteroids. The introduction of anti-TNF directed treatment with infliximab (TNF-antibodies) or etanercept (soluble TNF-receptor) has revolutionized the therapeutic efficacy for many patients with previously therapy-resistant chronic arthritis. My studies have dealt with the anti-inflammatory potential of a new macrophage deactivating compound CNI-1493, which is a tetravalent guanylhydrazone. CNI-1493 exerts its macrophage suppressive actions by inhibition of TNF and IL-1 synthesis at a translational level. In vitro studies revealed that the inhibitory effects of CNI-1493 was monocyte specific, with a downmodulation of the overall monokine production, but especially of TNF. These cytokinesuppressive effects were retained even in the presence of IFN-y, which is known to block the inhibitory effects mediated by glucocorticoids. T cell derived cytokine production was in contrast unaffected by CNI-1493. In vivo effects of CNI-1493 intervention were studied in collagen-induced arthritis (CIA) in the DA rat strain, where CNI-1493 successfully ameliorated clinical signs of arthritis. Immunohistochemical staining methods were developed for detection of intracellular rat cytokines. These methods were employed in a longitudinal study of CIA in DA rats for characterization of synovial expression of the cytokines TNF, IL- I beta and TGF-beta, as compared to that in animals treated with CNI-1493. These studies revealed an early, previously unrecognized TNF and IL-10 synthesis appearing in the synovial lining layer more than a week before disease onset. The findings thus further underline the importance of these two inflammatory cytokines in the pathogenesis of arthritis. After onset of clinical disease, the number of TNF producing cells clearly exceeded that of IL- 1beta, especially in the acute phase of inflammation but also in the chronic phase. The quantitative TNF dominance compared to IL-1 beta in CIA is the opposite result to that recorded in human RA using the same methodology. There was a marked down-regulation of TNF as well as of IL- I in the joints of animals treated with CNI-1493. Suppression of both TNF and IL-1 is a highly desirable anti- rheumatic strategy supporting future clinical trials with CNI-1493 in RA. Another new finding was the demonstration of high mobility group-1 protein (HMG-1) to act as a cytokine with potent proinflammatory properties. HMG-1 is a well cha-racterized nuclear DNA- binding protein that in addition has been shown to be produced as a secreted protein by activated macrophages. HMG-1 is almost as potent as bacterial LPS in stimulating monokine synthesis, but with a different kinetic response, making HMG-1 the most powerful endogenous macrophage activating factor ever reported. These findings suggest that this protein warrants investigation as a therapeutic target in inflammatory diseases
    corecore